skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bajcsy, Andrea"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Goal-conditioned policies, such as those learned via imitation learning, provide an easy way for humans to influence what tasks robots accomplish. However, these robot policies are not guaranteed to execute safely or to succeed when faced with out-of-distribution goal requests. In this work, we enable robots to know when they can confidently execute a user’s desired goal, and automatically suggest safe alternatives when they cannot. Our approach is inspired by control-theoretic safety filtering, wherein a safety filter minimally adjusts a robot’s candidate action to be safe. Our key idea is to pose alternative suggestion as a safe control problem in goal space, rather than in action space. Offline, we use reachability analysis to compute a goal-parameterized reach-avoid value network which quantifies the safety and liveness of the robot’s pre- trained policy. Online, our robot uses the reach-avoid value network as a safety filter, monitoring the human’s given goal and actively suggesting alternatives that are similar but meet the safety specification. We demonstrate our Safe ALTernatives (SALT) framework in simulation experiments with indoor navigation and Franka Panda tabletop manipulation, and with both discrete and continuous goal representations. We find that SALT is able to learn to predict successful and failed closed-loop executions, is a less pessimistic monitor than open- loop uncertainty quantification, and proposes alternatives that consistently align with those that people find acceptable. 
    more » « less
    Free, publicly-accessible full text available October 25, 2026
  2. Inverse Constraint Learning (ICL) is the problem of inferring constraints from safe (i.e., constraint-satisfying) demonstrations. The hope is that these inferred constraints can then be used downstream to search for safe policies for new tasks and, potentially, under different dynamics. Our paper explores the question of what mathematical entity ICL recovers. Somewhat surprisingly, we show that both in theory and in practice, ICL recovers the set of states where failure is inevitable, rather than the set of states where failure has already happened. In the language of safe control, this means we recover a backwards reachable tube (BRT) rather than a failure set. In contrast to the failure set, the BRT depends on the dynamics of the data collection system. We discuss the implications of the dynamics-conditionedness of the recovered constraint on both the sample-efficiency of policy search and the transferability of learned constraints. Our code is available in the following repository. 
    more » « less
    Free, publicly-accessible full text available August 5, 2026
  3. Robots can influence people to accomplish their tasks more efficiently: autonomous cars can inch forward at an intersection to pass through, and tabletop manipulators can go for an object on the table first. However, a robot's ability to influence can also compromise the physical safety of nearby people if naively executed. In this work, we pose and solve a novel robust reach-avoid dynamic game which enables robots to be maximally influential, but only when a safety backup control exists. On the human side, we model the human's behavior as goal-driven but conditioned on the robot's plan, enabling us to capture influence. On the robot side, we solve the dynamic game in the joint physical and belief space, enabling the robot to reason about how its uncertainty in human behavior will evolve over time. We instantiate our method, called SLIDE (Safely Leveraging Influence in Dynamic Environments), in a high-dimensional (39-D) simulated human-robot collaborative manipulation task solved via offline game-theoretic reinforcement learning. We compare our approach to a robust baseline that treats the human as a worst-case adversary, a safety controller that does not explicitly reason about influence, and an energy-function-based safety shield. We find that SLIDE consistently enables the robot to leverage the influence it has on the human when it is safe to do so, ultimately allowing the robot to be less conservative while still ensuring a high safety rate during task execution. Project website: https://cmu-intentlab.github.io/safe-influence/ 
    more » « less
    Free, publicly-accessible full text available June 6, 2026
  4. Contingency planning, wherein an agent generates a set of possible plans conditioned on the outcome of an uncertain event, is an increasingly popular way for robots to act under uncertainty. In this work we take a game-theoretic perspective on contingency planning, tailored to multi-agent scenarios in which a robot’s actions impact the decisions of other agents and vice versa. The resulting contingency game allows the robot to efficiently interact with other agents by generating strategic motion plans conditioned on multiple possible intents for other actors in the scene. Contingency games are parameterized via a scalar variable which represents a future time when intent uncertainty will be resolved. By estimating this parameter online, we construct a game-theoretic motion planner that adapts to changing beliefs while anticipating future certainty. We show that existing variants of game-theoretic planning under uncertainty are readily obtained as special cases of contingency games. Through a series of simulated autonomous driving scenarios, we demonstrate that contingency games close the gap between certainty-equivalent games that commit to a single hypothesis and non-contingent multi-hypothesis games that do not account for future uncertainty reduction. 
    more » « less